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ABSTRACT

In this paper, numerical simulation and flow field characteristic analysis
of the regular wave run-up around a fixed circular cylinder is achieved
by employing self-developed modules for wave generation and wave-
structure interaction based on the adaptive mesh refinement framework
Basilisk. To validate the accuracy of wave generation, the numerical
waves are compared with the theoretical results. Meanwhile, different
scales of grids are used to verify the grid convergence. The response am-
plitude operators (RAOs) of surface elevations obtained are compared
with experimental results and numerical results computed using the self-
developed solver naoe-FOAM-SJTU. Various wave parameters are se-
lected to analyze the influence of wave steepness on the flow field char-
acteristics around the cylinder. The evolution process of the free surface,
the secondary crest phenomenon and wave scattering are discussed. Air
entrainment is innovatively explicated. The study indicates that the Bas-
ilisk solver can efficiently and accurately capture the complex flow field
characteristics of regular wave run-up on a circular cylinder with high
computility utilization.

KEY WORDS: wave run-up; multiphase flow; air entrainment; Basi-
lisk

INTRODUCTION

With the exploitation of marine resources turning into the deep ocean,
floating platforms become widely used and play a significant role in off-
shore projects. Most floating platforms are structured with columns such
as SPAR and TLP. But under extreme sea conditions, the waves will
climb up along the columns and may even reach the bottom deck, which
is also known as wave run-up. Severe wave run-up causes huge thumping
pressure and splashing, thus threatening the stability and life span of the
platform. To avoid potential economic and life losses, it is necessary to
study wave run-up on columns of pillar-type platforms and make reason-
able designs to decrease its influence.

Numerous scholars have carried out many studies on wave run-up
through physical experiments, theoretical analysis, and CFD methods.
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Galvin and Hallermeier (1972) discovered that the steep wave run-up is
mainly affected by the wave scattering and viscous dissipation at the
wake region of the cylinder. Swan and Sheikh (2015) conducted the
model experiment on a surface-piercing column and specified two types
of high-frequency wave scattering, explaining the scattering effects in
detail. Wang et al. (2022) improved the accuracy of the wave run-up
measurement method based on image recognition. They completed the
frame extraction method of the collected videos according to the given
sampling frequency and established the time series image set. Through
image calibration, grayscale, threshold calculation, and wave surface
recognition to obtain the wave surface data, the measurement results of
wave run-up are obtained.

Theories about wave run-up have also developed fast, including linear
and higher-order diffraction theories and semi-empirical correlations.
Goda (2010) systematically introduced the random wave theory and its
application in the design of offshore structures, generally summarized
the wave run-up, and proposed a variety of calculation methods for wave
run-up based on empirical formulas that are suitable for different wave
conditions and bank slope shapes. Cao et al. (2017) proposed an efficient
semi-empirical formula for wave run-up on a circular cylinder consider-
ing the scattering parameter ka , and Li et al. (2022) improved the for-
mula based on the velocity stagnation head theory, which gives a rela-
tively precise prediction for wave run-up.

In recent decades, CFD methods have been widely utilized to study wave
run-up. Morgan et al. (2011) used OpenFOAM solver to research the in-
teractions between non-linear waves and the cylinder and focused on the
influence of computational parameters like grid size, discrete format, and
time steps. Sun et al. (2016) made a more detailed study of the nonlinear
interactions using a frequency domain potential flow solver DIFFRACT
and OpenFOAM and examined the degree of nonlinearity and the contri-
bution of each harmonic to the free surface run-up and wave forces. Liu
(2018) simulated the wave run-up and wave load characterization on a
fixed vertical cylinder and discussed the evolution process of free surface
and the secondary wave crest phenomenon, based on the independently
developed CFD solver naoe-FOAM-SJTU for ship and ocean engineer-

ing.



However, as the wave run-up generates phenomena such as wave scat-
tering, traditional CFD meshes take splendid computing resources to ac-
curately catch the flow field characteristics around the cylinder and the
free surface. The wave crest is prone to numerical dissipation, resulting
in the reduction of the simulation accuracy of wave run-up. The adaptive
cartesian grids are used in the study in response to this issue. A coarse
Cartesian mesh is uniformly generated over the entire region initially. As
the simulation processes, grids will be subdivided in quadtree or octree
mode until the mesh density at the curve boundaries meets the require-
ments at computationally demanding areas. This method is characterized
by high efficiency and accuracy and is ideal for fine simulation of wave
run-up.

The numerical simulation is based on the open-source solver Basilisk
(Popinet, 2009), with the embedded boundary method utilized to simu-
late curved solid boundaries and the VVolume of Fluid method adopted to
track the free surface. The velocity-inlet boundary wave-generating
method and momentum source absorption method are used to generate
and absorb the first-order Stokes waves. The study implements the sim-
ulation of wave run-up on the cylinder with high computility utilization
and analyzes the typical physical phenomena such as secondary crest and
wave scattering. In addition, air entrainment and characteristics of dif-
ferent stages of wave run-up are innovatively proposed.

METHODOLOGY
Governing equations
The open-source solver Basilisk is adopted to solve the two-phase in-

compressible viscous Navier-Stokes equation. The governing equations
in the present solver are as follows:
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where, p is the fluid density, U is the fluid velocity, t is the time, p is
the fluid pressure, x is the fluid dynamic viscosity,  is the gravita-
tional acceleration, f, is the surface tension term functioning only on
the surface, and S is the momentum source term which functions only
in the damping zone.

Interface capturing

The Volume of Fluid method is used to capture the free surface, and the
transport equation can be described below:
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—+VUa)=0 ©)

where, « indicates the relative proportion of fluid in each cell and its
value ranges from 0 to 1. As the study deals only with the two-phase flow,
a meets the requirements:

a=0 air
O<a<1 interface (4)
a=1 water
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The embedded boundary method is used to deal with the curved cylinder
boundaries. By considering the volume factions of the intersections be-
tween the mesh and the embedded boundary, the method allows the sharp
representation of a solid body inside a cartesian mesh and avoids gener-
ating complex grids. The detailed calculation process is given in the work
by Schwartz (2006).

Wave generation

The study adopts the velocity-inlet boundary wave-generating method to
create regular waves by defining the fluid speed and wave height on the
inlet boundary. The self-developed wave generation module sets the sur-
face elevation at the inlet boundary by defining the fluid volume fraction.
The inlet boundary conditions of free surface elevation and wave veloc-
ity for first-order Stokes wave are defined as:

n(xt) = %cos(kx — at) ()
U,(x,z,t) = ﬂwcos(kx —wt)
T sinhkd (6)
U, (x2,t) = ZHSINNKE ) Gy oty
T sinhkd

where, 7 is wave surface elevation, H is wave height, k is wave
number, L is the wavelength, d is water depth, T is wave period, @
is circle frequency of waves, andt is time. In particular, it is assumed
that the velocity perpendicular to the propagation direction (U, ) can be
ignored.

Wave absorption
The study uses the momentum source absorption method to decrease the

influence of the wave reflection. The momentum attenuation source term
added in the governing equation is described below:
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where, i represents the coordinate direction, S; is the momentum source
term in the i -direction, C is the linear constant depending on the simu-
lation environment coefficient, X,and X, are respectively the x-coordi-
nate values at the front and the end of the damping zone.

Particularly, making the viscous attenuation source term increase with
the x-coordinate can avoid the sudden reflection as the wave propagates
to the damping zone while making sure the wave is completely dissipated.

NUMERICAL SETUP
Computational model

The study focused on the regular wave run-up on a fixed circular cylinder.
The test case is based on the model tests on a truncated surface piercing
column performed at MOERI (Ocean Engineering Committee, 2014)
and refers to the work of Liu (2018). With the origin set at the center of
the fixed cylinder, the CFD computational domain can be described as
—2A<x<31 -A<y<A -1<z<0.51, where 4 is the wavelength.



At the right end, the damping zone with a length of A is set to avoid
wave reflection. Ten wave probes are installed in a radial pattern around
the cylinder at two different distances from its surface and divided into
pairs depending on different angles to the wave direction. The gap be-
tween the circles is about one radius of the cylinder. The numerical tank
setup is shown in Fig. 1, where the water depth d = 4, the cylinder di-
ameter D =16 m, and the cylinder draught H. =24 m. The left bound-
ary is set as the velocity-inlet boundary, the right boundary as the pres-
sure-outlet boundary, and the upper and lower boundaries as the no-slip
boundaries. The layout of wave probes is given in Fig. 2 and Table 1.
The test conditions are listed in Table 2.
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Fig. 1 Side view of the Numerical tank
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Fig. 2 Layout of the wave probes
Table 1. Coordinates of the wave probes
Inner X y Outer X y
Circle (m) (m) Circle (m) (m)
WPB1 | -8.206 0 WPO1 -16 0
WPB2 | -5.803 -5.803 | WPO2 | -11.314 | -11.314
WPB3 0 -8.206 | WPO3 0 16
WPB4 | 5.803 -5.803 | WPO4 | 11.314 11.314
WPB5 | 8.206 0 WPO5 16 0
Table 2. Test case settings
T H A H/A D/A
2.548 m 1/30
7s 4777 m 76.44 m 1/16 0.21
7.644 m 1/10

The simulation is based on the adaptive mesh refinement framework
Basilisk. At the initial moment, the mesh is uniformly generated over the
entire region and particularly refined around the cylinder. During the
simulation, the mesh is adaptively refined according to the volume
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fraction field and velocity field as Fig. 3 shows. The maximum refine-
ment level is |, , equivalent to the total cells 2% i the three-dimen-
sion simulation.

Fig. 3 Refined gridsat t=37.6s(H/A=1/16)

The grids close to the cylinder and the free surface are intense, especially
in the area where waves interact with the cylinder. And the farther away
from the surface of the cylinder and the interface, the coarser the mesh
is. Therefore, the total number of cells is efficiently decreased, which is
useful to increase computing efficiency and accuracy with the same or
even less amount of grids.

Convergence analysis

To validate the accuracy of the numerical methods, a mesh convergence
study based on the wave-generating experiment is carried out. Three sets
of grids with different maximum refinement levels are used for waves at
H =2.548 m. The surface elevations at the left boundary and compari-
son with theoretical results are presented in Fig. 4 and Table 3, where
¢ is the surface elevation.
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Fig. 4 Time histories of the surface elevations at the left boundary
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Table 3. Comparison of surface elevations at the left boundary

Number I Total Cells '\"Eerigrsgfuﬁ ed
Gl 8 3.11x10° 7.94%
G2 9 1.22x108 4.04%
G3 10 459x10° 0.96%

From the results, the stable waveforms of different groups are



almost identical and match the theory well, which indicates that
the numerical methods effectively reflect the physical phenome-
non studied. Considering the results have already converged in
G1 and stay within tolerance in G2 and G3, the maximum refine-
ment level is set to 9 in the subsequent study, as a balance of the
calculating efficiency and result accuracy.

RESULTS AND DISCUSSIONS
Wave run-up validation

To verify the correctness of the wave run-up simulation and prepare for
further research on the wave characterization, the study compares the
computed response amplitude operator (RAO) results with experimental
results and simulation results of self-developed solver naoe-FOAM-
SJTU (Liu, 2018) for free surface elevations. The RAO of surface eleva-
tions is defined as the ratio of the wave amplitude at the wave probes to
incident wave amplitude and reflects the characterization of wave re-
sponse under the influence of the linear wave. RAOs for first harmonics
at the inner circle of wave probes (WPB1, WPB4, WPB5) and outer cir-
cle of wave probes (WPO1, WPO4, WPO5) are shown in Fig. 5.
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Fig. 5 Comparison of RAOs (first harmonics) of surface elevations

From the figures, the numerical results agree well with experimental re-
sults and have smaller errors than the results of naoe-FOAM-SJTU in
general. The correctness of the wave run-up simulation is verified. At the
wave probes WPB1 and WPOL in front of the cylinder, the RAOs are
particularly close to experimental results and increase with steepness. It
indicates the fact that as the wave steepens, the wave run-up strengthens
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in front of the cylinder. At the wave probes WPB4 and WPO4 in the
shoulders of the cylinder, the RAOs share a similar varying trend with
the experimental results but the errors get bigger. As RAOs here decrease
with the wave steepness, they reflect the nonlinearity of the nearby flow
field. At the wave probes WPB5 and WPOS5 in the back of the cylinder,
the numerical results are relatively smaller than the experimental results
though they have a similar increasing trend. Based on the results, the
wave run-up strengthens both in the front and back of the cylinder but
weakens in the shoulders. This variation is reduced at the outer circle of
wave probes.

Note that at the inner circle of wave probes where the waves have direct
complicated interactions with the cylinder, the results are precise in par-
ticular, which shows the high internal fineness of numerical methods.
The average number of total cells in the simulation is about 1.4 million,
which is relatively less than the cells of 1.7 million in the work of Liu.
Considering the results of smaller errors, the accuracy and efficiency of
adaptive mesh refinement are verified.

Wave run-up analysis

According to the RAO analysis, the flow field exhibits widely different
properties in different regions around the cylinder, roughly demarcated
by the shoulders of the cylinder. The wave at H / A =1/16 is chosen for
further analysis.

Fig. 6~7 show the time histories of surface elevations and frequency
spectra at typical wave probes WPB1 and WPB4, where f is the fre-
quency.

{/m

/s
surface elevations

(a) Time histories of
15

0 0.5 1
f/ Hz
(b)Frequency spectra of surface elevations

Fig. 6 Time histories and frequency spectra at WPB1
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(b)Frequency spectra of surface elevations

Fig. 7 Time histories and frequency spectra at WPB4

In front of the cylinder, the wave keeps a steady and regular shape and
the frequency is concentrated at 0.14 Hz, which is also close to the fre-
quency of the incident wave. The flow field presents good regularity and
linearity and corresponds to the increasing RAO with wave steepness
well. Behind the shoulders of the cylinder, the secondary crest phenom-
enon is observed and the wave height is the smaller, reflecting the strong
irregularity and nonlinearity. This is due to the superposition of the inci-
dent wave and reversed circulating flow. When the wave approaches the
cylinder, the disturbance drives the elevations in front of the cylinder to
flow in two directions around the cylinder and meet at the back. Then
part of the currents continue to flow upstream and get superimposed with
the incident wave. From the frequency spectrum, the second-order am-
plitude of the surface elevations at 0.3 Hz is slightly smaller than the
first-order amplitude and even a faint third-order amplitude occurs at 0.6
Hz.

Based on the analysis above, the wave run-up process is concluded.
When the wave reaches the front surface of the cylinder, the block of the
cylinder drives the water to run up and down along its surface at the same
frequency as the incident wave. The amplitude is larger than the incident
wave and increases linearly with wave steepness. The circulating cur-
rents are also developed and begin to flow around the cylinder. As the
wave propagates on the sides of the cylinder to the back of the cylinder,
the evenly bisected incident waves meet the reversed circulating flow
and cause strong nonlinear interactions like the secondary crest phenom-
enon. The superimposed wave features the decomposed wave frequency
and lower amplitude. After the bisected waves merge at the back of the
cylinder, the water run-up similar to the one in front of the cylinder with
smaller surface elevations occurs. And the merged wave progressively
regains its original characteristics.

It is necessary to note that there is a certain amount of noise in the surface
elevation data, which is caused by the self-written wave probing function,
as there are few related developments on Basilisk. The noise results in
the deformation of waveforms and affects the second-order amplitude to
some extent. The physical offset at the wave crest leads into a non-zero
mean value of surface elevation, which is the main reason for the mag-
nitude at 0™ frequency. Though it has little effect on qualitative findings,
improving the wave probing function is an important part of future im-
provements.

Wave scattering analysis

For further analysis of the flow phenomenon, the scattered wave fields
at H/A=1/16 are plotted in Fig. 8. The wave scattering process dur-
ing a period can be divided into 4 phases, which matches the physical
experiment results specified by Swan and Sheikh (2015).
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(a)Type-1 waves generating

(b)Type-2 waves generating

(c)Type-2 waves moving downstream

(d) Type-1 waves of wave trough generating
Fig. 8 Scattered wave fields around the cylinder



As the wave crest approaches the cylinder, water is forced to run up and
wash down on the front surface of the cylinder due to part of the disturb-
ance, which generates a scattered wave field concentric to the cylinder
(Type-1) in (a). When the wave crest reaches the cylinder, the other part
of the disturbance drives the elevation flow around both sides of the cyl-
inder and meets at the back surface of the cylinder. Then the circulations
continue to propagate around the cylinder and flow back upstream to in-
teract with incident waves, which develops another kind of scattered
wave field non-concentric to the cylinder (Type-2) in the shoulders of
the cylinder as (b) shown. The Type-2 wave is larger than Type-1 as it
involves the superposition of two waves. After the wave crest passes the
column, the Type-2 scattered wave fields also move downstream of the
cylinder as (c) shown. (b) and (c) demonstrate that Type-2 waves scatter
both at the sides of the cylinder and in the downstream direction. Finally,
the wave trough approaches the cylinder and Type-1 scattered wave
fields appear again in (d) with a smaller amplitude, which is the only
scattered wave fields generated by the wave trough. Two Type-1 waves
are developed respectively by the wave crest and the wave trough in each
cycle. Compared with the experimental results, the wave scattering
shares the same generating pattern and properties despite slightly faster
dissipation. The influence of the reflecting waves is much less due to the
absence of sidewall and the damping zone in the downstream direction.
It is concluded that the simulation catches the two types of scattered
wave fields accurately.

The Type-1 wave concentric to the cylinder features linearity and affects
the surface elevations in the upstream direction mainly. Strong nonline-
arity is a notable character of Type-2 scattered wave fields, mainly re-
sulting from the superposition of two kinds of waves. The Type-2 fields
have a complex higher-order influence on the nearby flow field charac-
teristics while transferring from the shoulders to the down-wave side,
which contributes to the strong nonlinear interactions at WPB4 men-
tioned in Wave Run-up Process Analysis. As the two Type-2 waves are
merged in the back of the cylinder, the surface elevations get disturbed
and slightly deviate from the incident wave heights.

Air entrainment

During the wave run-up, a certain amount of air is entrained into the wa-
ter and tiny bubbles are generated. The study is based on the simulation
results at H/A=1/16. Fig. 9 shows the time history of the total air
volume entrained during the wave run-up, where V is the instantaneous
total volume of air. The whole process can be divided into three phases.
During the phase 1 t=0~0.25T , as the wave crest approaches the cyl-
inder, the water continues to climb up and wash down on the front sur-
face and cat([:h air at the same time.
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Fig. 9 Time history of total entrained air volume
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During the phase, the wave crest thumps the cylinder and then passes
through. A large volume of gas is entrained and the total air volume
reaches the highest peak. During the phase , existing bubbles get dissi-
pated and almost no new gas is entrained. The total volume slowly de-
creases to zero.

Fig. 10 shows the bubbles’ general spatial distribution, where N is the
amount of bubbles. Fig. 11 shows the average results of bubble size dis-
tribution in each cycle, where r is the bubble radius. From the figures,
bubbles are centrally generated on the front and back surfaces of the cyl-
inder, especially at 0° and 180° to the wave direction where the wave
make strong action on the cylinder. Most bubbles are small with a size
lessthan r=0.4 mm. Inphase I, the air gets rolled in the water to form
even medium-sized cavities at r =0.2mm. These bubbles clustered di-
rectly in front of the cylinder. In phase II, two processes begin along
with the crest hitting the cylinder. First, the strong interaction causes that
a large amount of air is entrained and big cavities at r =0.3~ 0.4 mm
are formed. Second, the medium-sized bubbles from the previous phase
break into tiny bubbles at r=0.1 mm. The two processes last from
t=0.25T to t=0.55T in frontof the cylinder. Then, a series of bubbles
ataround r =0.2 mm are generated at the back of the cylinder when the
two flows driven by disturbance around the cylinder meet as Wave Scat-
tering Analysis mentioned. In Phase 111, the wave generally passes the

cylinder, and bubbles are dissipated.
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CONCLUSIONS

In this paper, numerical simulation and flow field characteristic analysis
of the regular wave run-up on a fixed vertical circular cylinder is
achieved. The study indicates that the Basilisk solver can efficiently and
accurately capture the complex flow field characteristics of regular wave
run-up around a circular cylinder, and the wave parameters significantly
change the flow characteristics during the wave run-up process. The
main conclusions are shown below:

(1)A convergence study is carried out for waves at H =2.548 m, whose
results agree well with the theory. The convergence of the grids and the
effectiveness of the numerical methods are validated.

(2) Compared with the results of the self-developed solver nace-FOAM-
SJTU, the RAOs of surface elevations at different wave steepness give
better agreement with the experimental results, which validates the ac-
curacy and efficiency of adaptive mesh refinement.

(3) By analyzing the time histories and frequency spectra of surface ele-
vations in different positions, the flow field presents linearity in front of
and behind the cylinder and nonlinearity in the shoulders. The superpo-
sition of the incident waves and reversed circulating flow develops the
significant secondary crest phenomenon.

(4) The analysis of the flow field around the cylinder indicates that the
simulation accurately catches the four phases of wave scattering. Two
types of scattered wave fields are identified. The nonlinear Type-2 waves
contribute to the nonlinearity in the shoulders of the cylinder.

(5) The study of air entrainment divides the whole process into three
phases according to the instantaneous entrained air volume. The causes,

sizes, and distribution patterns of bubbles at each stage are innovatively
explicated.
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